
Regular Expressions

Gregory Adam

Contents
• Introduction

• A small program

• The engine

• The Object model

• Operator precedence

• Pattern

• Links

• Example

• .Net bits

Introduction

• A means to match strings of text

• Eg: fox in “The quick brown fox jumps over the
lazy dog”

• Written in a formal language

– Mathematical model

– Generates a parser (interpreted or compiled)

• Many dialects

A small program

The Engine

• Is a state machine

• Source: http://perl.plover.com/Regex/
http://perl.plover.com/Regex/article.html

• Sample: ^(a|b)*a$

http://perl.plover.com/Regex/article.html

The object model – Properties

Name Type Default

Pattern string Defines the regular expression

IgnoreCase bool false True = ignore upper and lower case

Global bool false Find all matches or only the first one

MultiLine bool false False:
^ matches beginning of the string
$ matches the end of the string

True:
^ matches beginning of the string and
each position following \n or \r
$ matches the end of the string and
each position before \n or \r

The object model - Methods

Name Type Arguments

Test bool (stringToTest) Tests whether a string
matches the pattern
Eg: if(regExObj.Test(“abcd”)
)

Replace string (stringToTest,
replaceText)

Replaces every successful
match with replaceText

Execute Matches
collection

(stringToTest) Returns a collection of all the
matches

The Matches Collection
Name Type

Count Int The number of matches

Item[i] Match object One match item - zero based - see table below

Name Type

FirstIndex Int Zero based offset of the match

Length Int Length of the match

Value String Matched value (text)

SubMatches Collection One submatch per parenthesis
Numbered left to right

Name Type * Submatches need version 5.5 of VBScript (IE 5.5)

Count Int The number of subMatches

Matches.Item[0].SubMatches[0 to Count-1]

Example
• Pattern : ((a+)(b+)) Parentheses: (0(1a+)(2b+))

• String: aab abb

• Matches.Item[0].Value : aab

– SubMatches[0] : aab

– SubMatches[1] : aa

– SubMatches[2] : b

• Matches.Item[1].Value : abb

– SubMatches[0] : abb

– SubMatches[1] : a

– SubMatches[2] : bb

Operator precedence
Name Associativity

Parentheses ()

Quantifiers * ? + {} None

Concatenation ab Left A followed by b

Alternation | Left ab|cd = ab or cd

Law

r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative

r(st) = (rs)t Concatenation is associative

r(s|t) = rs|rt
(r|s)t = rt|rs

Concatenation distributes over |

Associativity is the order of evaluation when the operators are of equal precedence.

- addition/substraction is left associative: 1 - 2 + 3 is evaluated as (1-2)+3

- assignment operators are right associative in C# and C :

a = b = c = 2; // a = (b = (c = 2)));

Pattern – Character escapes

\t Matches a tab

\r Matches a carriage return

\n Matches a line feed

\v Matches a vertical tab

\f Matches a form feed

\octal Use octal representation. Max 3 octal digits, eg \o123

\xhex Use hex, eg \xc0

\cchar Matches a control char: eg \cC matches CTRL+C or 0x03

\unnnn Matches a char represented by 4 hex chars

\num Matches num, where num is a positive integer. A reference back to
remembered matches. For example, "(.)\1" matches two consecutive
identical characters

\ The char following is not a special char
Eg: a* matches a*

Pattern – Character classes (1)
pattern

[char_group] Matches any single char in
char_group
Is by default case sensitive

[ae] “a” and “e” in “lane”

[^char_group] Matches any char that is NOT in
char_group
Only right after the opening [

[^ae]

[\^a] or
[a^]

[[]
[^[]

[]]
[^]]

“l” and “n” in “lane”

“^” and “a” in “a^”

“*“ in “*a”
“a” in “*a”

“+” in “*a+”
“*“ and “a” in “*a+”

[first-last] Character range: matches any char
in the range from first to last

Note: [a-z] does not include
accented chars

[A-C] “A”, “B”, “C” in “ABCD”

. Matches any char except \n f.x “fox” in “Atoutfox”

Pattern – Character classes (2)
pattern

\w Matches any word character
including underscore.
Equivalent to [A-Za-z0-9_]

\w “a”, “1”, “4” in “a1+4”

\W Matches any non-word character.
Equivalent to [^A-Za-z0-9_]

\W “+” in “a1+4”

\s Matches any white space including
space, tab, form-feed, etc.
Equivalent to [\f\n\r\t\v]

\w\s "D " in "ID A1.3"

\S Matches any nonwhite space
character.
Equivalent to [^ \f\n\r\t\v]

\s\S “ x” in “int x”

\d Matches a digit character.
Equivalent to [0-9].

\d "4" in "4 = IV"

\D Matches a non-digit character.
Equivalent to [^0-9].

\D " ", "=", " ", "I", "V"
in "4 = IV"

Anchors (zero-width assertions)
– Cause a match to succeed or fail depending on the

current position in the string

– The engine does not advance in the string

– No character is consumed

pattern

^ The match must start at the beginning of the
string or line.

^\d{3} "901-" in "901-333-"

$ The match must occur at the end of the string
or before \n at the end of the line or string

-\d{3}$ “"-333" in "-901-333"

\b The match must occur on a boundary
between a \w (alphanumeric) and a \W
(nonalphanumeric) character.

fox\b “fox” Atout fox

\B The match must not occur on a \b boundary. \Bfox “fox” in Atout fox

Backreference construct
- Matches the value of a numbered subexpression

pattern

(subexpression) Captures the matched
subexpression and assigns it a zero-
based ordinal number

(ba)\1 “baba" in “alibaba“

Note: there must be an exact
match of the previously matched
subexpression.

(b\w)\1 “baba" in “alibaba“

Nothing in “alibaby”

(b\w){2} “baba" in “alibaba“

“baby” in “alibaby”

(b\w)\1\1

(b\w)\1{2}

“bababa” in “alibababa”

“bababa” in “alibababa”

Quantifiers

– specifies how many instances of the previous
element must be present in the input string for a
match to occur.

– Previous element :

• can be a character

• a group

• a character class

Quantifiers
pattern

* Matches the previous element zero
or more times

\d* “” in “abc” (4 times)
“123” in “abc123”

+ Matches the previous element one
or more times

\d+ No match in “abc”
“123” in “abc123”

? Matches the previous element zero
or one times
Makes the previous element
optional: same as {0,1}

ab?c

ab{0,1}c

“ac” in“ac”
“abc” in “abc”

{n} Matches the previous element
exactly n times.

(ba){2} “baba” in “alibababa”

{n,} Matches the previous element at
least n times

(ba){2,} “bababa” in “alibababa”

{n,m} Matches the previous element at
least n times, but no more than m
times.

(ba){1,2} “baba” in “alibababa”

Greed

• Always returns the longest possible match

Pattern - Global Input Output

<.+> <a><c> <a><c>

<[^>]+> <a><c> <a>

<c>

Substitutions (1)
– Regular expression arguments supported in

replacement patterns
pattern Replacem

ent
pattern

Input Output

$number Substitutes
the substring
matched by
group
number.

(\w+)(\s*)(\w+) $3$2$1 "one two" "two one"

$$ Substitutes a
literal "$"

(\w+)(\s*)(\w+) $3$$$1 "one two" "two$one"

$& Substitutes a
copy of the
whole
match.

(\w+)(\s*)(\w+) $& + $& "one two" "one two + one two"

Substitutions (2)
pattern Replace

ment
pattern

Input Output

$` Substitutes all the
text of the input
string before the
match

(\d+) $` "one 2 three" “one one three"

$' Substitutes all the
text of the input
string after the
match

(\d+) $’ "one 2 three" "“one three three"

$+ Substitutes the last
group that was
captured

(\w+)(\s*)(\w+) $+ "abc def 123" “def 123"

$_ Substitutes the
entire input string

(\w+)(\s*)(\w+) $_ "abc def 123" "abc def 123 123"

.Net – bits (1)

• Regex class has static methods for

– Match() (vbscript: Execute(), Global = false)

– Matches() (vbscript: Execute(), Global = true)

– IsMatch() (vbscript: Test())

– Replace()

– Caches 15 recently used patterns (compiled)

• Change CacheSize to modify the number

.Net – bits (2)

• Groups can be accessed by (SubMatches in vbscript)

– Non-negative integer (0-match.Groups.Count-1)

• Match.Groups[i].Value

• Groups[0] is the entire matched expression

– A name in case of named groups

• (?<FileStem>\w+)

• Match.Groups(“FileStem”).Value

– Named groups can be nested

• (?<FileName>(?<FileStem>\w+)\.(?<FileExtension>\w+))

.Net – bits (3)

• Positive/negative lookahead/lookbehind zero-
width assertions

(?= subexpression) Zero-width positive lookahead assertion.

(?! subexpression) Zero-width negative lookahead assertion.

(?<= subexpression) Zero-width positive lookbehind assertion.

(?<! subexpression) Zero-width negative lookbehind assertion.

.Net – bits (4)

• Positive/negative lookahead/lookbehind zero-
width assertions

• Example : Password constains

– At least one digit

– At least one upper-case char

– At least two lower-case char

– + sign is not allowed in the password

– At least 6 chars long

.Net – bits (5)

.Net – bits (6) – Greed Quantifiers

pattern Input Output

*? Matches the previous element zero
or more times, but as few times as
possible.

<.*?> <><c> <>

<c>

+? Matches the previous element one
or more times, but as few times as
possible.

<.+?> <><c> <>
<c>

?? Matches the previous element zero
or one time, but as few times as
possible

<.??> <><c> <>

<c>

.Net – bits (6) – Greed Quantifiers

pattern Input Output

{n}? Matches the preceding element
exactly n times.

<.{1}?> <><c>
<c>

{n,}? Matches the previous element at
least n times, but as few times as
possible.

<.{1,}?> <><ccc> <>
<ccc>

{n,m}? Matches the previous element
between n and m times, but as few
times as possible.

<.{0,3}?>

<.{1,3}?>

<><ccc>

<><ccc>

<>

<ccc>

<>
<ccc>

Links (1)
• http://regexlib.com/ samples – 2834

• http://www.codeproject.com/KB/dotnet/expr
esso.aspx Tool to build regular expressions

• http://msdn.microsoft.com/en-
us/library/ms974570.aspx Microsoft beefs up
VBScript with regular expression – Intro (1999)

• http://msdn.microsoft.com/en-
us/library/f97kw5ka(VS.85).aspx

– Vbscript pattern

http://regexlib.com/
http://www.codeproject.com/KB/dotnet/expresso.aspx
http://www.codeproject.com/KB/dotnet/expresso.aspx
http://msdn.microsoft.com/en-us/library/ms974570.aspx
http://msdn.microsoft.com/en-us/library/ms974570.aspx
http://msdn.microsoft.com/en-us/library/ms974570.aspx

Links (2)
• http://msdn.microsoft.com/en-

us/library/az24scfc.aspx

– Regular expression language elements - .Net

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx

